In 2010, the City received a Certified Local Government grant from the Illinois Historic Preservation Agency for $12,500 to prepare a condition assessment of Old Lincoln School, 2125 7th Avenue. Council approved an agreement with SGGM Architects and Interior Designers of Rock Island and Davenport to determine what could be done to stabilize the building from deteriorating, with the understanding that it could be redeveloped into residential, commercial and/or office uses at some future date. The report is attached to this memo.

This analysis was done when Artspace, the Minneapolis based developer, was interested in redeveloping the school into artist oriented live/work apartments. Artspace is still interested in the property but is in the midst of completing two other Illinois projects. It is possible that they, or some other developer, could step forward and prepare redevelopment plans for the historic and unique school building.

As a local landmark (the oldest remaining school building in the City and only Romanesque Revival building), the City owned structure must comply with the City’s Preservation Ordinance, the Secretary of the Interior’s “Standards for Historic Preservation Projects” and future restoration or stabilization must be consistent with Preservation Brief 31 “Mothballing Historic Buildings.” SGGM’s report used these resources when preparing their assessment of the building’s conditions and the stabilization work that would be done.

The City’s current fiscal year budget includes $250,000 in the Downtown Tax Increment Finance District fund for building improvements.

Pages 10 and 11 of the SGGM report provide a summary of the work, with cost estimates, that should be done to stabilize the building until a developer is ready to step in and renovate.

Items 1 – 6 of the report recommend repairing the roof and structural elements, addressing exterior brick and stone conditions and installing basic electrical service and ventilations. This work is estimated to cost $221,500 ($197,700 in repairs plus $23,800 in design, engineering and bidding costs) and is expected to stabilize the building for seven to 10 years.

Items 7 – 12 recommend more extensive heating, cooling, ventilation, electrical and fire alarm improvements at an estimated cost of $79,520 ($71,000 construction plus $8,520 design) and two additional years of stability.

The SGGM report also recommends interior and exterior work to remove debris and overgrown landscaping. They recommend using City personnel to accomplish this. Staff concurs that this could be done, augmented by Broadway Historic Area residents, much as was done when neighbors and Inspection personnel did last year.

There are several options for the property. They are:

- Do nothing at this time
- Implement items 1 – 6 of the SGGM report
- Implement items 1 – 12 of the SGGM report
- Demolish the building

Staff does not consider doing nothing a viable option as the building will continue to deteriorate and becomes structurally compromised. The City’s Property Maintenance Code would mandate that action be taken to repair or remove the building.

Staff does not support the demolition option at this time as the building has reuse potential. As a local landmark, it is an important element of the Broadway Historic District and complements the adjoining landmarks – Murphy Lofts and Christian Science Church – and the nearby funeral home (Larson / Garden Ridge).

Rather than removing the building, staff supports implementing items 1 – 6 of the SGGM report. This will provide time to select a developer, to prepare architectural designs for the School’s reuse and to secure redevelopment funding. Items 7 – 12 are not considered critical improvements at this time.

This approach is consistent with the City’s Broadway Neighborhood Plan, preservation and sustainability objectives and similar efforts to adaptively reuse important buildings, several of which are local landmarks. Examples of such past successes include McKesson Lofts, Jackson Square, Voss Lofts, Sala Flats and Rock Island Lines Depot (Abbey Station).

Redeveloping Old Lincoln School for residential and/or commercial use would implement multiple City goals. It would also anchor this corner of the two square block area occupied by Old Lincoln School and the vacant Intermediate Academy / Central Junior High School. (The vacant School District owned property could be redeveloped at some future date, once the District determines it is no longer needed. The kitchen is used for District food services now and there is a shared heating system with the adjoining Administration Center.)

Should redevelopment not be possible, then demolition should be reconsidered. It should be noted that staff received an estimate for asbestos testing, abatement and demolition ranging from $200,000 – 300,000.

Finally, as a local landmark, the Preservation Commission would review and approve any physical changes to the School, except maintenance-in-kind, through the Certificate of Appropriateness process.

Recommendation: Staff recommends implementing SGGM’s recommendations 1 – 6 to stabilize Old Lincoln School.

Submitted by: Alan M. Carmen, Planning and Redevelopment Administrator
Gregory S. Champagne, Community and Economic Development Director

Approved: John C. Phillips, City Manager
October 27, 2010

Drake Daley
Construction Officer
Community and Economic Development
City of Rock Island
1528 3rd Avenue
Rock Island, Illinois 61201

Re: Old Lincoln School
Professional Condition Assessment
Report & Recommendations for Hibernation
Project No. 1056

Thank you for the opportunity you have given our Team to examine Old Lincoln School in an effort to preserve the property for future re-development. Although the building and grounds show significant change in the past several years, the future developer will be breathing new life into a true treasure.

The following pages represent information gathered, digested and transformed into recommendations. Much more time and effort should be spent in the form of analysis prior to implementing the major recommendations. We have engaged Swanson Construction Company of Bettendorf, Iowa to review and revise our cost estimates for the roof and framing repair items. We have also called on Northwest Restoration of Seaton, Illinois to examine the exterior masonry walls to develop more accurate costs for tuckpointing and face brick replacement.

Some minor editing of the recommendations have taken place since our original submittal on September 24, 2010.

We would be pleased to accompany you when this report is presented to the Rock Island City Council to answer questions and clarify statements should the Council need more information.

Please let me know your questions.

Sincerely,

SCHOLTZ GOWEY GERE MAROLF

John E. Gere, AIA, NCARB

File 1056/letter 10-27-2010

Enc... Report
PROFESSIONAL CONDITION ASSESSMENT
REPORT & RECOMMENDATIONS FOR HIBERNATION
OLD LINCOLN SCHOOL
ROCK ISLAND, ILLINOIS

PROJECT 1056
SEPTEMBER 24, 2010
REVISED OCTOBER 27, 2010

PREPARED BY:

SGGM ARCHITECTS & INTERIOR DESIGNERS, PC
1800 3RD AVENUE, SUITE 600
ROCK ISLAND, ILLINOIS

MISSMAN STANLEY ASSOCIATES
1717 STATE STREET. SUITE 201
BETTENDORF, IOWA

IEFM CONSULTING ENGINEERS
128 EAST 23RD AVENUE
COAL VALLEY, ILLINOIS
TABLE OF CONTENTS

HISTORY, OBJECTIVES, REFERENCES 2

OBSERVATIONS & RECOMMENDATIONS 3 – 9

SUMMARY of PRIORITY WORK ITEMS & ASSOCIATED COSTS 10 – 11

PHOTOGRAPHS 12 – 15

PLAN DRAWINGS A1 – A5

APPENDICES:
 National Register of Historic Places Inventory – Nomination Form (1984)
 Rock Island Preservation Commission – Nomination for Landmark Designation (10-12-84)
HISTORY, OBJECTIVES, REFERENCES
A walk-through survey of the Old Lincoln School on the southwest corner of 7th Avenue & 22nd Streets in Rock Island took place on September 10, 2010. The following individuals were present at the walk-through:

SGGM Architects & Interior Designers:
 John Gere, Principal
 Robert Braun, Project Architect

IEFM Consulting Engineers:
 Dan Mount, Principal – Electrical Engineer
 Brian Stone, Principal – Mechanical Engineer

Missman Stanley Associates:
 Chad Carr, Manager, Structural Engineering

HISTORY:

The subject building was constructed in 1894. The building listed on the National Register of Historic Places (United States Department of the Interior), and has been designated as a Local Landmark (Rock Island Preservation Commission). Because of these classifications, Preservation Brief 31 (US Department of the Interior) Mothballing Historic Buildings was our guiding reference for this process.

It is our understanding that the building was in continuous use from 1894 to 1985. Since that time the building has been vacant, except for storage of historic building materials and furniture. The building has suffered some significant deterioration due to very limited maintenance since its use was discontinued.

OBJECTIVES:

The purposes of this report are to:

 Describe the current conditions of the building and site
 Identify repairs/replacement necessary:
 To stabilize any unsafe conditions.
 To prevent the elements from causing any further deterioration.
 To prepare the property for hibernation until funds are available to make permanent improvements for useful occupancy (estimated 10 to 15 years).
 To present cost estimates for the work to be done for the recommended work items.

REFERENCES:

Other documents included with this report for reference:

 National Register of Historic Places Inventory – Nomination Form (1984)
 Rock Island Preservation Commission – Nomination for Landmark Designation (10-12-84)
 Sketches plans of each floor and roof
 Photographs
 Historic photos
 Current condition
OBSERVATIONS & RECOMMENDATIONS
OBSERVATIONS/RECOMMENDATIONS:

EXTERIOR:

Roof leaks and associated damage (see Roof Plan – drawing A5 - for areas described).

Area "A": Major roof leak in west area (see photo 1). This area was not reroofed when the rest of building was reroofed. Severe deterioration of the asphalt shingles has left moisture damage to the attic floor/second floor ceiling (see photo 4). Also the flashing interface between the roof and the west masonry parapet wall is open and will require replacement as part of the re-roofing project. A large portion of the west wall (exterior face) is covered with efflorescence resulting from the roof leak.

Recommendations:
- asphalt shingles, underlayment felt and wood sheathing must be replaced.
- Flashing along the parapet wall must be replaced/reworked to close the current gap.
- Clean the efflorescence from the west walls.

See Structural for further information

Area "B": Northwest area with low-slope metal roof (over the open formal stair) (see photo 2). Damage has been caused to the wood portions of the stair from second floor to the attic (handrails, flooring). It appears that the metal roofing is not properly transitioned into the asphalt shingle roofing.

Recommendations:
- Remove the metal roofing and damaged wood sheathing and replace with a membrane roofing material with associated flashings.
- The wood handrail has been replaced with a temporary utilitarian assembly. Portions of the original rail are in the building. If rail needs to be rebuilt in the future, the design is identical to the flights of stairs below, so replacement pieces can be fabricated.

See Structural for further information

Area "C": Smaller but very visible leak in north portion of roof (facing west) (see photo 3).

Recommendations:
- It appears that repairing/replacing the roof sheathing and replacing the asphalt shingles and felt underlayment will be the total fix.

Eave gutters are clearly filled with leaves, dirt and live plant material and need to be cleaned (including downspouts) to allow free drainage.

Recommendations:
- Remove all plant material and thoroughly clean the gutters to create positive and free drainage from the roof.

Exterior walls are constructed of multi-wythe brick masonry (uninsulated) with plaster interior finish. There is also a rusticated stone base and trim. The masonry appears to be sound, but re-pointing and replacement of damaged brick will be necessary to make them water-tight.

In the Historic Register Nomination Form it is stated that the original wood windows were “double-hung one-over-one. The present windows are one-over-nine.” The one-over-nine style units are still in place in only three or four window openings. Less than half of the sash units have been replaced with new one-over-one style, which appear to be acceptable regarding historic accuracy. The remainder of windows have frames without sash in place. All of the window openings in the building are covered with protective plywood panels screwed to the wood frames from the exterior. The one-over-nine window sash units which have been removed are stored in the rooms where they were removed. Glass is broken in many of the salvaged sash units.

Exterior doors have been secured shut, except for a door to the north end of the gymnasium.
STRUCTURE:

The building is framed with load bearing masonry walls supporting wood joists at each floor and timber columns with wood joist framing at the roof. The center of the building is supported by a large pipe column that extends to the attic floor. There are two floors above the basement level and a large unfinished attic space. Each level is approximately 12,000 square feet in area.

CEILING AND ROOF FRAMING:

The roof framing was observed from the attic space. Access to the roof top was not available. Several openings in the roof were observed. These openings were generally in two separate areas. These areas were the West most roof slope (See Photo 1) and the main stair area (See Photo 2). There was also at least one large opening at the North roof slope near the west end (See Photo 3).

Roof openings appear to be due to deterioration of the roofing including shingles and underlayment. The open roof areas allow water penetration into the building attic and stairwell on a regular basis. This moisture has created the majority of the structural framing issues in the building. Structural roof framing members appeared to be in generally good condition. However, close inspection was not possible due to access.

Recommendations:

The areas of severe roof deck deterioration noted above should have the roof deck boards (sheathing) replaced to completely enclose the roof. The roof should be surveyed by a roofing contractor to determine the quantity of roof deck boards (sheathing) to replace. Any deck boards with holes or that have become too soft on which to stand should be replaced. The roofing should be replaced at the areas noted which includes the west slope and above the main stair. This should be completed at the same time as the roof deck boards are replaced. The roof should be properly flashed and caulked for a complete re-roof installation.

Providing a water-tight roof system is the most critical maintenance item in preserving the structural integrity of the building.

ATTIC FLOOR LEVEL:

Large areas of the attic floor level have deteriorated due to regular moisture penetration through the roof. These areas are generally directly below areas of deteriorated roof. The main problem area is on the west side. The floor decking in this entire area should be removed to properly assess the extent of deterioration of the floor joists. It appeared that the majority of the floor joists were adequate, but several should be replaced.

Recommendations:

We recommend replacing all floor joists above the center room on the west side of the building.

There are two large timber columns supporting the west roof section. These two columns bear partially on masonry walls below. It is apparent that neither of these two columns have full bearing on the wall (See Photo 4). There is an existing built up floor joist at each of these locations directly below the column base spanning parallel with the wall.

Recommendations:

These members should be replaced with new wood beams to achieve full column bearing. These new wood floor members could be fastened to the face of the existing masonry wall along their length. These columns are not in immediate danger of collapse, but should be addressed soon to ensure the future integrity of the structure.
SECOND FLOOR LEVEL:
No significant structural issues were discovered at this level except at the main stair. The floor deck at the stair was not entirely visible due to the pile of ceiling debris that had collected there.

Recommendations:
- The top stair landing area should be cleaned of debris, and the floor deck should be investigated for holes and rotten wood framing members to be replaced.

At the northwest most room, there is a soft spot in the floor that aligns with the ceiling opening and the roof opening in the attic that has formed.

Recommendations:
- Floor sheathing should be repaired at this location.

FIRST FLOOR LEVEL:
There was severe buckling of floor finish decking due to prolonged high moisture levels, but there were no significant structural issues discovered at the main (first) level other than what was previously noted. There is also a pile of ceiling debris at the stair landing.

Recommendations:
- This stair should also be cleaned of debris and investigated for rotted wood members for replacement.

BASEMENT LEVEL:
The basement construction consisted of stone and masonry bearing walls supporting a wood frame floor above. There was evidence that a fire had occurred in the old boiler room. There were large areas of charred framing above this room (See Photo 5).

Recommendations:
- This framing should be thoroughly inspected prior to future occupancy to identify and replace any wood joists that have significant fire damage. None of the fire damaged framing appeared to be vulnerable to collapse at this time.
- All other observable framing in the basement appeared to be adequate for future occupancy.

There was a room in the back, behind the boiler room with a ceiling that was at grade level. Daylight was visible from inside this room.

Recommendations:
- The roofing over this room should be replaced along with proper flashing and sealants.

The floor structure (wood flooring on wood floor joists) has been removed in the southeast corner room. The reason for this removal is unknown.

Recommendations:
- Replacement can be addressed at the time of re-development of the building. This work is not critical for hibernation.

EXTERIOR FRAMING AND VENEER:
The outside of the building was observed to assess the condition of the brick veneer, limestone base, stairs and other framing. The brick veneer shows some signs of deterioration, but does not have any significant structural problems that need immediate attention. The brick veneer has several small to medium size cracks at various locations around the building. There are also large areas of brick that have surface de-lamination and several areas with efflorescence (See Photo 6). The de-lamination is due to moisture penetration into the brick in combination with freeze/thaw cycles. Regular restoration work would mitigate this gradual deterioration.
Recommendations:

A maintenance program that includes, tuck-pointing, replacement of cracked bricks, caulking and application of a penetrating surface sealer would reduce future restoration cost and protect the building framing and finishes from future damage.

The limestone base is in good condition. The stone joint mortar has deteriorated in much of the structure. Open joints with little or no mortar are very common around the entire building.

Recommendations:

It is recommended that the limestone joints are tuck pointed to help protect the interior from moisture and pests which are detrimental to the structure.

INTERIOR:

Many of the wood panel interior doors remain in their openings, so it is believed they are originals. They are divided into four unequal panels arranged vertically (those with lights, the glass is in the top panel position). Some doors, which have been removed from their openings are stored in the building. Most appear to be in fair condition.

The wood tongue-in-groove wood flooring throughout the building has been subject to humidity changes and moisture due to roof leaks. In numerous areas the floor has buckled severely. It is difficult to surmise if these areas can be flattened without cutting and replacing individual planks.

Original ceilings were plaster on wood lath, finished with bead board planks. In many areas acoustic panels (12 x 12) were glued to the paneling, and later removed, leaving glue spots on the wood paneling. In the areas damaged by roof leaks, the wood paneling has come loose from the joists.

Plaster walls appear to be in fair condition in most areas, except where moisture from roof or wall leaks have occurred. Paint in many areas is peeling.

It is likely that existing paint contains lead, which will need to be tested and abated. And asbestos could be present in heating piping insulation, and possibly in the acoustic tile and adhesive. Asbestos testing and abatement should be scheduled.

The building was used by a former owner for storage of historic architectural features and furniture removed from the Old Lincoln School and other buildings. For the most part it is clear which items belong to Lincoln School and which items are from other sources.

No pests were encountered during the walk-through, however, there is an accumulation of bird feces on the floors.

Recommendations:

The interior items to be addressed in this section are substantial, but for the most part, cosmetic. They are not safety related can withstand the time delay, as long as they are not subject to further moisture intrusion and severe humidity changes. These issues can be addressed at the time that funds are available for re-development of the building.

SITE:

Existing grade slopes away from the building for positive drainage, except for an areaway in near the southeast corner of the building. An area drain is not evident, but likely exists. Landscaping (trees and shrubs) around the building are overgrown and need to be pruned and removed for security and better site drainage.

Recommendations:

Remove/severely prune overgrown trees and shrubs particularly near the building.
MECHANICAL:

It is clear which space was mechanical room in the basement, although the boiler has been removed. Steam radiators are present throughout the building in most spaces.

Plumbing fixtures in the several toilet rooms have been removed except for the urinals, and piping has been capped.

A gravity ventilation system exists, consisting of duct shafts on each floor extending to the attic where large ducts connect to a ventilator at the roof peak. Some of the low wall louvers have been covered with wood panels.

PLUMBING SYSTEMS OBSERVATIONS/RECOMMENDATIONS:

Plumbing Fixtures: $1,000:

Plumbing fixtures would remain where still intact. Fixtures have been removed in numerous locations. Reuse of fixtures or faucets is not recommended without thorough reconditioning at a future time. Replacement fixtures should be anticipated.

Plumbing vents still remain connected and penetrate the roof, thus subject to rainwater and active venting to the outdoors. It is suspected that waste piping system are also currently connected to an active sanitary sewer main. Not knowing the condition of the indoor waste & vent piping, the vent penetrations through the roof could be capped to eliminate potential water leaks due to rain water collection.

Numerous plumbing fixtures have already been removed, while a few still remain connected. Existing open waste and vent piping should be plugged, and existing connected fixture removed or traps filled with vegetable oil to prevent sewer gases from entering the building and minimize trap evaporation.

Domestic Cold Water ($0):

Existing water service where it enters the building appears to be intact, and also serves multiple sprinkler system risers. Building has been without heat and the water systems and sprinkler systems have since been drained. Complete replacement of existing water piping and sprinkler piping is recommended for future restoration.

Domestic Hot Water ($0):

No existing water heater was observed. Boiler room had been gutted from a previous fire and equipment has been removed. Complete replacement of existing water piping is recommended for future restoration.

Natural Gas Service ($500):

Existing gas service has been disconnected. Existing gas piping previously serving boiler and equipment has been capped. Complete replacement of gas piping is recommended for future restoration.

Natural gas service would be necessary to serve minimum heating requirements to maintain the building above freezing. A new gas service to serve this purpose is recommended. Costs for piping to heating equipment is included with equipment.

Storm Water ($0):

No existing storm water systems were identified. If ground water or other standing water is encountered, individual sump pumps to remove standing water should be added. No standing water was observed during our visit.

Sprinkler System ($140,000):

Sprinkler system consists of multiple risers in the basement area near the main water service. Piping and risers appear to be intact, but the sprinkler system has been drained since there is no heat in the building. Portions of the piping system have been damaged by building failures collapsing the piping. Since the piping has been drained, the interior is suspected to be corroded. Complete replacement of the sprinkler system is recommended for future restoration.

Provide dry sprinkler system protection for the building to minimize risk of building loss due to fire.
HVAC SYSTEMS OBSERVATIONS/RECOMMENDATIONS:

Temperature control:

Building is currently not heated. Freezing temperatures can accelerate deterioration. Provide minimal heating systems to maintain minimum temperatures to avoid freezing.

Too low of temperature dries out building and may affect contents. Recommendation for preservation is to maintain minimum of 45 deg F.

Ventilate during summer months to avoid stagnation and moisture buildup. Building envelope should be repaired and made weather tight to minimize unnecessary rainwater and moisture infiltration. Natural ventilation may be provided via weatherproof louvers at various locations to allow the building to ventilate naturally.

Leave interior doors open to promote more even temperatures and natural ventilation throughout the interior.

Moisture Control:

Maintain relative humidity below 60%RH. Eliminate standing water and water leaks. Dehumidifier units could be added to help control high moisture within the building during summer periods.

Maintain relative humidity above 20%RH. Watch vapor permeance of building to avoid frost within walls. Humidifiers could be added to help control low moisture within the building during winter periods.

Condensation on surfaces & finishes. Poor building insulation and vapor permeance. Monitor humidity to prevent condensation.

Ventilation:

Maintain minimum ventilation and air exchanges to avoid stagnation and minimize areas of high moisture. Preservation Brief suggests 1 to 2 air exchanges in winter, 2 to 4 air exchanges in summer. Winter, during the day, when it is warmer and not as dry; summer during the day when it is warmer and not as humid.

Maintain minimum ventilation to control odors.

Avoid rapid temperature and moisture fluctuations to slow deterioration. Gradual changes are better for material preservation.

Avoid moisture in materials at or below freezing temperatures to minimize freeze/thaw damage.

Close off un-used intake and exhaust openings to keep weather and pests out of building.

Recommendations:

Heating Systems:

Utilize forced air heat where possible to minimize potential for steam or water leaks at heating equipment.

Gas fired or electric unit heaters should be installed in the central core areas on each floor of the building to provide temporary heat to maintain interior temperatures in the range of 35 to 45 deg F during winter periods. Leave doors open into the exterior rooms to allow the heat to migrate through the space.

Cooling Systems:

Building currently has no cooling system, and essentially no provisions to allow cooling to be added existing systems.

To control moisture during the summer periods, individual packaged dehumidifiers should be installed in the central core area of the building, on each floor, to maintain maximum humidity levels during summer periods. Leave doors open into the exterior rooms to allow moisture to naturally migrate through the space.

A building of this vintage and construction is expected to have no or minimal vapor barrier to control moisture. Dehumidifiers would be fairly large, and would run often as the outdoor moisture can permeate into the building quite easily.
Ventilation:

Provide an exhaust system on the various floors with louvers installed in existing window openings to introduce and exhaust outdoor air for ventilation purposes.

Temperature Controls:

No existing controls are functional. Utilize new controls on packed HVAC equipment for control.

Provide monitoring controls for temperature and humidity. Add an energy management system to monitor temperature and humidity levels throughout the building and control the various equipment as needed.

ELECTRICAL:

Electrical System:

There is presently no functioning electrical system within the building. At some point in the past there was a fire and the electrical service equipment was destroyed and/or demolished.

At some point in time a small electrical service with a single panelboard was installed in the north end of the basement, but is no longer in service.

It is recommended that a small electrical service be installed to provide power for mechanical ventilation and/or heating equipment, as well as to provide power for minimal lighting and monitoring equipment.

Lighting:

Provide minimal lighting to allow safe passage during monitoring visits.

Systems:

Provide automatic fire detection throughout the facility.

Provide a security system to detect unauthorized intrusions.

Provide a telephone line for alarm systems notification.
SUMMARY OF PRIORITY WORK ITEMS & ASSOCIATED COSTS
NOTE: No architectural or engineering design fees are included in the cost estimates stated here. Estimates may vary twenty percent under/over the figures presented.

1. **ROOF-LEAK REPAIR & ASSOCIATED INTERIOR FRAMING REPAIR:** The top priority is to repair all roof leaks. Since the asphalt roofing is not original to the building, applying shingles to match the present color and style should be acceptable. The leaks in the metal roofing area could be rectified by repair and rework of the existing metal panels and flashing. In conjunction with this roof work, the deteriorated roof sheathing/framing, as well as the attic floor framing and stair landing under the major leaks must be replaced or repaired. In conjunction with this work, clean the roof gutters and downspouts to allow free drainage of water from roof.

 Estimated costs:
 - Roof leak repair $112,000.00
 - Interior floor framing repairs $10,000.00

2. **EXTERIOR MASONRY REPAIR/MAINTENANCE:** A program for tuckpointing and replacement of damaged face brick and stone exterior is recommended. Mortar mix and tooling must closely match existing joints, per Department of Interior Guidelines. There is a range of need for this work, but the critical areas can be identified. Also, when the roof is water-tight, the efflorescence should be cleaned from the west and northwest walls to prevent brick deterioration.

 Estimated costs: $66,200.00

3. **REMOVE DEBRIS & UNNECESSARY ITEMS:** Remove the stored items and debris, which are not relevant to the building.

 Estimated costs: This work could be accomplished by city personnel

4. **ORGANIZE/CONSOLIDATE RELEVANT STORED ITEMS:** Move those stored items which are relevant to the building to a central location (perhaps the attic). Cover the items with tarps or other breathable material.

 Estimated costs: This work could be accomplished by city personnel

5. **ELECTRICAL SERVICE:** Add a small electrical service to power a fire alarm system, minimal lighting, ventilation and/or heating.

 Estimated costs: $4,000.00

6. **GRAVITY VENTILATION:** In the absence of a working mechanical HVAC system, installation of louvers in several of the window closure panels is recommended as additional cross-ventilation to the existing system. Wood panels covering wall louvers should be removed.

 Estimated costs: $5,500.00

NOTE: We estimate that, by implementing the above six recommendations, that the condition of the building’s exterior and interior will be stable for seven to ten years.
7. **MECHANICAL VENTILATION:** Provide a mechanical exhaust system with associated wall louvers. If this option is chosen, Item #7 above may be omitted.

 Estimated costs: $7,000.00

8. **HEATING SYSTEM:** Provide forced air heat via gas-fired or electric unit heaters.

 Estimated costs: $35,000.00

9. **TEMPERATURE CONTROLS:** Provide a temperature control system in conjunction with the heating/ventilating system.

 Estimated costs: $11,000.00

10. **COOLING SYSTEM:** Provide a cooling system for better humidity control in summer conditions.

 Estimated costs: $10,000.00

11. **FIRE ALARM:** There is a desire by the City of Rock Island to install a fire alarm system in the building. This will require a functional electrical service.

 Estimated costs: $18,000.00

12. **REMOVE/PRUNE OVERGROWN LANDSCAPING:** For security and to improve the appearance of the site, remove or heavily prune the trees, shrubs and other plantings close to the building.

 Estimated costs: This work could be accomplished by city personnel

NOTE: We estimate that, by implementing the above additional six recommendations, that the condition of the building's exterior and interior will be stable for ten to twelve years.

Periodic building surveys must be conducted during the hibernation period. Some remedial maintenance may be required per the survey findings.

There are also a number of issues to address when funds are available and when a willing developer comes forward to bring the building back to a useful life. Some of these items are outlined in previous pages of our report in the *Observations* section. Mechanical/electrical/plumbing items are accompanied by cost estimates.